Tag: gene

Deep functional synthesis: a machine learning approach to gene functional enrichment

Gene functional enrichment is a mainstay of genomics, but it relies on manually curated databases of gene functions that are incomplete and unaware of the biological context. Here we present an alternative machine learning approach, Deep Functional Synthesis (DeepSyn), which moves beyond gene function databases to dynamically infer the functions of a gene set from…
Read more

Machine learning of stochastic gene network phenotypes

A recurrent challenge in biology is the development of predictive quantitative models because most molecular and cellular parameters have unknown values and realistic models are analytically intractable. While the dynamics of the system can be analyzed via computer simulations, substantial computational resources are often required given uncertain parameter values resulting in large numbers of parameter…
Read more

Gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure

Understanding the genetic regulatory code that governs gene expression is a primary, yet challenging aspiration in molecular biology that opens up possibilities to cure human diseases and solve biotechnology problems. However, the fundamental question of how each of the individual coding and non-coding regions of the gene regulatory structure interact and contribute to the mRNA…
Read more

Biological network topology features predict gene dependencies in cancer cell lines

In this paper we explore computational approaches that enable us to identify genes that have become essential in individual cancer cell lines. Using recently published experimental cancer cell line gene essentiality data, human protein-protein interaction (PPI) network data and individual cell-line genomic alteration data we have built a range of machine learning classification models to…
Read more