Tag: cell

Semi-supervised machine learning facilitates cell colocalization and tracking in intravital microscopy

2-photon intravital microscopy (2P-IVM) is a key technique to investigate cell migration and cell-to-cell interactions in organs and tissues of living organisms. Focusing on immunology, 2P-IVM allowed recording videos of leukocytes during the immune response, highlighting unprecedented mechanisms of the immune system. However, the automatic analysis of the acquired videos remains challenging and poorly reproducible.…
Read more

Weakly-Supervised Prediction of Cell Migration Modes in Confocal Microscopy Images Using Bayesian Deep Learning

Cell migration is pivotal for their development, physiology and disease treatment. A single cell on a 2D surface can utilize continuous or discontinuous migration modes. To comprehend the cell migration, an adequate quantification for single cell-based analysis is crucial. An automatized approach could alleviate tedious manual analysis, facilitating large-scale drug screening. Supervised deep learning has…
Read more

Accurate cell tracking and lineage construction in live-cell imaging experiments with deep learning

Live-cell imaging experiments have opened an exciting window into the behavior of living systems. While these experiments can produce rich data, the computational analysis of these datasets is challenging. Single-cell analysis requires that cells be accurately identified in each image and subsequently tracked over time. Increasingly, deep learning is being used to interpret microscopy image…
Read more

Biological network topology features predict gene dependencies in cancer cell lines

In this paper we explore computational approaches that enable us to identify genes that have become essential in individual cancer cell lines. Using recently published experimental cancer cell line gene essentiality data, human protein-protein interaction (PPI) network data and individual cell-line genomic alteration data we have built a range of machine learning classification models to…
Read more

DeLTA: Automated cell segmentation, tracking, and lineage reconstruction using deep learning

Microscopy image analysis is a major bottleneck in quantification of single-cell microscopy data, typically requiring human supervision and curation, which limit both accuracy and throughput. To address this, we developed a deep learning-based image analysis pipeline that performs segmentation, tracking, and lineage reconstruction. Our analysis focuses on time-lapse movies of Escherichia coli cells trapped in…
Read more

Benchmarking predictions of MHC class I restricted T cell epitopes

T cell epitope candidates are commonly identified using computational prediction tools in order to enable applications such as vaccine design, cancer neoantigen identification, development of diagnostics and removal of unwanted immune responses against protein therapeutics. Most T cell epitope prediction tools are based on machine learning algorithms trained on MHC binding or naturally processed MHC…
Read more