Month: April 2020

Prediction and characterization of transcription factors involved in drought stress response

Transcription factors (TFs) play a central role in regulating molecular level responses of plants to external stresses such as water limiting conditions, but identification of such TFs in the genome remains a challenge. Here, we describe a network-based supervised machine learning framework that accurately predicts and ranks all TFs in the genome according to their…
Read more

Identification of Stem Cells from Large Cell Populations with Topological Scoring

Machine learning and topological analysis methods are becoming increasingly used on various large-scale omics datasets. Modern high dimensional flow cytometry data sets share many features with other omics datasets like genomics and proteomics. For example, genomics or proteomics datasets can be sparse and have high dimensionality, and flow cytometry datasets can also share these features.…
Read more

Machine Learning and Optimal Control of Enzyme Activities to Preserve Solvent Capacity in the Cell

Experimental measurements or computational model predictions of the post-translational regulation of enzymes needed in a metabolic pathway is a difficult problem. Consequently, regulation is mostly known only for well-studied reactions of central metabolism in various model organisms. In this study, we utilize two approaches to predict enzyme regulation policies and investigate the hypothesis that regulation…
Read more